土石流流量の把握に向けた動画解析技術の適用

国土交通省 九州地方整備局 大隅河川国道事務所 原田 光博,岩田 哲郎 日本工営株式会社 〇倉上 健, 田方 智, 佐野 泰志, 古木 宏和, 伊藤 隆郭

※令和5年度所属

<u>1. はじめに</u>

活発な噴火活動が続いている鹿児島市桜島では, 噴火活動の 影響により、山体が荒廃しているため、小規模の降雨でも土石 流が発生する。 桜島の野尻川では、土石流の発生や規模を検知 し,砂防工事関係者,市への情報提供および土砂災害の実態把 握を目的にセンサ類やCCTVカメラ等を用いた観測, 監視が精力 的に行われている1),2)。センサ類を活用した接触型の観測では, 土石流発生・流下時の時系列データを取得できるが、計測時に、機 器の破損や流出、断線等などに課題があり、時系列データを取得で きない場合がある。CCTVカメラ映像を用いた非接触型の観測、監 視は、上記の課題を解決しつつ、土石流発生時の現場状況を面的 に取得できるが、映像データの解析を人力で行うことが多いこと から、人的・時間的コストに課題がある。

一方で、映像データの解析に画像解析技術を活用し、省力化を 図ることができる。中でも、土石流のようなダイナミックに物体 が動く現象には、輝度情報(明るさ)に着目した土石流検知3)や、 動画解析技術であるオプティカルフローによる映像からの土石流 の流速算出4が行われ,輝度情報に着目した解析の適用性が確認さ れている。しかし、映像から土石流の流速や水位等の物理量把握 は,適用事例が少ないことや,流量算出に必要な流積(水位,流下

観測箇所の位置図

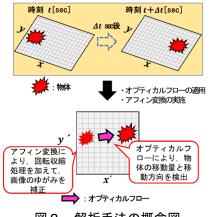


図2 解析手法の概念図

幅)が算出できていないこと、野尻川7号堰堤のように川幅が広く、流路幅全幅を土石流が流れていな い事例への適用には課題がある。そこで本研究では、土石流流量把握に向けて、動画解析技術を用いた 表面流速,流積(水位,流下幅)の算出を試みる。

2. 画像解析による水位, 流速, 流下幅の把握

野尻川1号堰堤にて土石流発生時に撮影されたCCTVカメラ映像(2023年9月10日14時25分-9月10日14時3 5分,図3)に対して,動画解析による水位,流速把握を実施した。解析には,土石流が水通し全幅を流れて いる時間帯の映像を選定した。流速は、動画解析によって検出した動体(土石流)の移動距離と経過時間 から求めた。水位は、動画解析によって検出した動体(土石流)と不動体(堰堤堤体部)の境界部までの高 さとした。流下幅は,堰堤の水通し幅(13m)を用いた。流量は,動画解析によって算出した表面流速,水位 と流下幅を乗算して求めた。なお、比較用として、技術者の目視計測結果(水位、表面流速、流量)を用い た。流量は、目視計測によって取得した水位、表面流速と、水通し幅を乗じて算出した。解析結果より、水 位は、目視計測結果の0.7-1.2倍程度(スパイク部を除き)であった。水位のピーク付近の時間帯(図3の緑 矩形部)では,動画解析による推定水位が目視計測の推定水位より,過小評価傾向であった。原因として, 解析範囲直上流部(図3白丸部)にて、一時的な堆積が発生し、右岸側に流心が移動したことにより、左岸 側の水位が低下した可能性が考えられる。流速は、動画解析による推定流速が目視計測の推定流速の0.7-1.2倍程度であった。流量は、目視計測結果から算出した流量の0.9-1.1倍程度であった。なお、流速、水位 の解析結果に見られるスパイク部(図3橙矩形部)は、カメラの首振りによって発生した異常値であった。 野尻川7号堰堤にて土石流発生時に撮影されたCCTVカメラ映像(2023年6月30日12時30分-6月30日13時0 0分,図4)に対して,動画解析による流下幅の把握を実施した。解析には,土石流が水通し幅全幅を流れて いない時間帯を含む映像を選定した。流下幅の判定は、解析範囲を流下方向に短冊状に区分し、区分した

解析範囲において,動画解析手法によって算出した表面流速(平均値)が0.2m/sを越えた部分を土石流が流下したと判定した。比較データとして,技術者の目視計測結果を用いた。

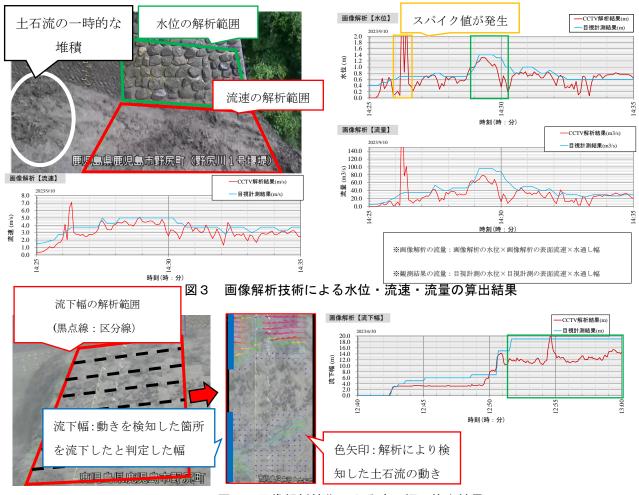


図4 画像解析技術による流下幅の算出結果

動画解析により推定した流下幅は、目視計測結果と比較して、0.6-1.3倍程度であり、12時51分以降(図4の右縁矩形)は過小評価傾向であった。図4より、土石流は流下幅全幅を流れているが、動画解析結果では流速が0.2m/secを超えなかったため、流下していないと判定している。そのため、目視計測より過小評価傾向を示したと考えられる。

4. まとめと今後の課題

動画解析による結果は、目視計測結果と比較して、流速(0.7-1.2倍)、水位(0.7-1.2倍)、流量(0.9-1.1倍)となった。野尻川7号堰堤にて撮影された土石流が全幅流下していない映像に対して、解析により動きが検知できる場合は流下幅の判定が可能であり、映像から土石流流量の面的把握の簡素化や、全幅流下していない場合での流量データの補正等に繋がる可能性が見えた。しかし、カメラの首振りによるスパイク値が発生する課題があった。この課題に対して、スパイク値前後で水位の急激な増減に着目し、統計手法や異常検知AI手法等を活用して、スパイク値を除去する対応が必要である。

引用文献

- 1) 國友優 桜島における土石流観測体制の現状と課題,土木技術資料 53-5(2011), pp.42-45, 2011.
- 2) 靏本孝也,上小牧和貴 桜島における土石流観測について,2019年度九州国土交通研究会,2019.
- 3) 柴田俊,小竹利明,山田拓 輝度の差分映像による斜面崩壊・土石流の検知と降雨・夜間の監視映像の鮮明化,第10 回土砂災害に関するシンポジウム論文集,pp79-84,2020.
- 4) 倉上健, 古木宏和, 伊藤隆郭, 田方智, CCTV カメラ動画を用いた土石流・崩壊の自動検出, 建設コンサルタント業務・研究発表会論文集(建設コンサルタント業務研究発表会論文集) Vol.22 pp13-16,2022.