地形変化に対する高分解能 SAR 衛星画像の活用事例

鈴木 崇¹⁾・下村博之¹⁾・野田敦夫¹⁾・吉川和男²⁾・柴山卓史²⁾・鈴木清敬¹⁾ ¹⁾株式会社パスコ コンサルタント事業部 防災技術部 ²⁾株式会社パスコ 衛星事業部 技術部

1.はじめに

地震や台風等による大規模自然災害が発生した場 合、二次災害の発生防止や早期復旧のために早急な 被災状況の把握が必要と考えられる。降雨時に発生 する可能性が高い土砂災害による被災状況把握には、 比較的天候の影響を受けにくく広域の画像取得が可 能である高分解能 SAR(合成開口レーダー)を搭載し た人工衛星の活用が期待される。

X バンドの SAR を搭載する TerraSAR-X(以降、TSX) は 2008 年 6 月に発生した岩手・宮城内陸地震におい て、撮影当日の天候が曇り、10km×10km の調査範囲 という条件の中、撮影オーダーから判読終了まで約 1 日程度と災害状況の早期把握に有効なツールである ことが報告されている¹⁾。

しかしながら、高分解能 SAR 衛星の画像はサイド ルッキングレーダの特性上、「フォアショートニン グ」「レイオーバー」「レーダシャドウ」による判読 困難な領域が存在する。

この不可視領域解消のため、下降軌道(東から)と 上昇軌道(西から)の2つの軌道から撮影した画像 を使用した崩壊地判読事例を報告する。

2.TSX の仕様

TSX は空間分解能約 1m(最高)のXバンドの合成 開口レーダー(SAR)を搭載した商用衛星である。回 帰日数は 11 日であり、現地時間の朝 6:00 には北か ら南下がり(下降軌道)で東側からの撮影を行い、夕 方 18:00 前後には南から北上がり(上昇軌道)で西側 からの撮影を行っている。

同衛星は3つの撮影モードを有しており、撮影幅 10kmの高分解能 SpotLight モードでは最高で約1m の空間分解能を持つ画像を取得できるが、入射角に よって空間分解能は変化する。より広域を撮影する 場合には、30km幅で撮影できる StripMap モードや 100km幅の ScanSAR モードが利用できる。

3. 検討方法

検討方法を以下に示す。

災害発生直後に撮影された航空写真から崩壊地 分布を判読

下降及び上昇軌道、それぞれの SAR 画像から崩 壊地分布を判読

それぞれの画像と航空写真を比較して判読でき た崩壊地と判読できなかった崩壊地を区別 画像単独の場合と2方向で組み合わせた場合の 崩壊地数を斜面方位ごとに崩壊地数を集計し、 個数差を検証

4. 撮影諸元

検討対象は山口県防府市である。2009 年 7 月の土 砂災害で被災した国道 262 号線沿いの勝坂地区、特 別養護老人ホーム「ライフケア高砂」等が位置する 真尾地区を含む約 5km × 約 10km の範囲である(図 1)。

表 1 撮影諸元

撮影日時	軌道	入射角	分解能
2009/07/25 06:18	下降軌道	37.0°	約2.0m
2009/07/26 18:10	上昇軌道	40.0°	約2.0m

5.対象地域の諸元

検討対象は下降軌道と上昇軌道が重なった範囲とした。対象範囲の地形特性把握のために国土地理院 作成「数値標高モデル(DEM)10m メッシュ(標高)」を 使用した。斜面方位及び勾配は、メッシュデータを ArcGIS で 10mGRID データに変換して作成した。

対象範囲には、斜面勾配 20°~30°を示す斜面が 全体の約3割弱を示し、西から南東向きの斜面が約 6割を占めている(図2)。

6.判読結果

6.1 航空写真からの判読結果

空中写真の判読結果、対象範囲内には 66 個の崩壊 地が判読された。崩壊地は斜面勾配 20°~40°に約 7割が分布し、西~南及び北東~東向きの斜面に分布 している(図3)。

6.2 SAR 画像からの判読結果

SAR 画像で崩壊地判読した結果、東から撮影した下 降軌道の場合、航空写真の判読結果と比べて約3割 の崩壊地が判読できた。西から撮影した上昇軌道の 場合、航空写真の判読結果と比べて約5割の崩壊地 が判読できた。2つの軌道を合わせると約7割の崩 壊地が判読できた。

崩壊地面積別で見ると面積が3,000(m²)より小さ な崩壊地から判読できない崩壊地が現れる傾向が確 認された(図4)。

撮影方向に正対する斜面ではフォアショートニン グが起こることで判読が困難となっている結果が現 れているが、下降軌道の場合は西斜面の崩壊地の判 読箇所が多く、上昇軌道の場合は南斜面の崩壊地が 多く判読できた。

図 5 SAR 画像判読結果(下降軌道)

図 6 SAR 画像判読結果(上昇軌道)

7.まとめ

今回の範囲では、双方向から撮影された画像を組 み合わせることで SAR 画像特有の判読が困難な領域 が倍近く解消されることが確認された。

単バンド画像とカラー画像との差や10倍近い解像 度の差による判読精度の違いがあるために、判読精 度が高いのは SAR 画像よりも空中写真であると考え られる。しかしながら、天候不順の場合や被災範囲 が広域に分布する場合の被災状況モニタリングの際 には、SAR 画像の活用が期待される。

参考文献

 野田ほか(2009): 災害発生直後における高分解能 SAR 整理の活用事例(岩手・宮城内陸地震を事例として).
平成 21 年度砂防学会研究発表会概要集,p166-177.