急勾配斜面における岩盤クリープの表面構造と内部構造

(独) 土木研究所 土砂管理研究グループ 〇横山 修,内田太郎,中野陽子,田村圭司

- ランドケアリサーチ 笠井美青
- 砂防エンジニアリング(株) 鈴木隆司

1. はじめに

崩壊面が岩盤にまでおよぶ深層崩壊は、大規模な土 石流の発生や天然ダムの形成により、周辺地域に甚大 な被害を及ぼすことがある。このような深層崩壊の発 生箇所を事前に予測することは、防災の観点から極め て重要である。これまで、深層崩壊跡地の観察から、 深層崩壊の発生斜面は、深層崩壊発生前に岩盤が風化 し緩んでいた、あるいはクリープが生じていた事実な どが報告されてきた(例えば千木良, 2006)。このこ とは、岩盤クリープなどの斜面のいわゆる「緩み」を 把握することが、深層発生予測に有効である可能性を 示している。しかしながら、岩盤クリープなど斜面の 緩みを把握する方法は、基本的には空中写真による微 地形判読しかなく、判読の際には判読者の技量が必要 となる。一方,近年,レーザプロファイラ(以下,LP) による計測により,従来以上に地表面の詳細な地形情 報が得られるようになり、地すべりなど過去の斜面の 変動を把握できる可能性が指摘されてきた(笠井ら, 2008)。さらに空中電磁探査は、従来面的な把握が困 難とされてきた山地域の地盤構造を把握できる可能性 があることが示されてきた(鈴木ら, 2009)。

そこで本研究では、空中写真判読や地表地質踏査に より岩盤がクリープしている斜面であることが明らか になった斜面とその周辺斜面の地下構造と地表面構造 の特徴を、空中電磁探査やLPデータ解析などの広域に 適用可能な手法により、定量的に把握することを試み た。

2. 検討地域と岩盤クリープ斜面

調査対象としたのは、九州南部の鰐塚山地である。 鰐塚山地には四万十帯の砂岩、泥岩が分布する。鰐塚 山周辺では2005年9月の豪雨により12カ所の深層崩 壊が発生した。空中写真(2003年、縮尺1/16,000,モ ノクロ)により微地形の判読を行った結果、12箇所の 深層崩壊のうち、7箇所は岩盤クリープ斜面であった。 ここでは、稜線下の急傾斜面と中腹部の緩傾斜面、そ して先端部の急傾斜面によって構成され、全体として 丸みのある膨らんだ斜面を岩盤クリープ斜面として抽

図-1 岩盤クリープ斜面と非岩盤クリープ斜面

出した(図·1)。本研究で対象とした鰐塚山から北西に 延びる尻無川周辺の斜面にも複数の岩盤クリープ斜面 が認められる(図·2)。さらに,現地踏査により,図に 示す岩盤クリープ斜面の先端で砂岩層が縦方向の亀裂 を伴って斜面の下方に倒れかかるようなトップリング 状のクリープを観察することができたことから,この 斜面で岩盤クリープが発生していることを確認した。 一方,対岸の非岩盤クリープ斜面では,変形した露頭 は確認できず,地表面勾配 40~60°の急傾斜を呈してお り,クリープ斜面とは対照的である。

3. 検討方法

3.1 空中電磁探査

空中電磁探査は、ヘリコプターによって送受信コイ ルを曳航し、地盤内に発生する磁場を計測して地盤の 比抵抗分布を調査する手法である。平行する測線を設 定することで、比較的広い範囲を面的にかつ同一精度 で地盤の比抵抗を調査することができる。比抵抗値 (Ω・m)の大小により地盤の風化程度を推定すること ができる(鈴木ら、2009)。地盤の比抵抗は、岩盤を 対象とした場合、粘土鉱物の含有量が多いほど、体積 含水率が高いほど、低くなる。すなわち、地下水面以 下では、比抵抗が低いほど風化が進行した岩盤と見な すことができる。

3.2 LP データを用いた地形解析

LP データより 2m の DEM を作成し, 斜面勾配と固 有値比を算出した。固有値比は, 斜面に立てた垂線ベ クトルの乱れを地表面の乱れとして評価するもので, 地表面の凹凸の度合い, あるいはなめらかさを表現で き,地すべりの活動度合いを評価できる可能性が示さ れている(笠井ほか, 2008)。

図-2 検討対象地域の岩盤クリープ斜面

4. 結果

空中電磁探査の結果,岩盤クリープ斜面では地表面 から深さ30~50mにまで10Q・mの低比抵抗帯(図・3 上図における色の濃い部分)が分布しているのに対し, 稜線の岩盤クリープ斜面の外の稜線上では低比抵抗帯 が存在しないことが明らかになった(図・3 下図)。こ の斜面の近辺で採取されたボーリングコア(鈴木ほか, 2009)を参考として,比抵抗100Q・mを風化岩盤と 新鮮岩盤の境界と仮定すると,風化岩盤の層厚は岩盤 クリープ斜面では50~70m程度,非岩盤クリープ斜面 では10~20m程度であり,緩んだ岩盤の深さが両者で 数倍異なることが明らかとなった。

次に、LPデータによる勾配分布を見ると、稜線直下 の急傾斜面(40~50°)のさらに下方が岩盤クリープ斜 面となっており、岩盤クリープ斜面内は、緩傾斜面(30° 以下)とやや急な斜面(30~40°)とが混在しているこ とが分かる。(図-4)。一方、対岸の非岩盤クリープ斜 面は、全般的に 40°~50°の急傾斜面となっている。固 有値比でみると、非岩盤クリープ斜面では固有値比の 低い(0~3)沢が発達し、凹凸が大きいが、岩盤クリ ープ斜面では固有値比 5~10の分布が多く、相対的に 表面がなめらかであることが分かった(図-5)。

5. まとめ

空中電磁探査とLPデータを用いることにより,定量 的かつ広域的に斜面の内部や表面の状況が把握でき, また,今回の例では岩盤クリープ斜面と非岩盤クリー プ斜面に明瞭な差があった。このことは,空中電磁探

図-3 斜面内部の比抵抗分布

査とLP データを用いることにより, 岩盤クリープ斜面 を定量的かつ客観的に抽出できる手法を構築できる可 能性を示している。

謝辞

空中電磁探査の計測とデータ処理については応用地 質(株)にお願いした。ここに記して感謝致します。

参考文献

 千木良雅弘(2006):2004年台風14号による九州の 土砂災害,京都大学防災研究所年報,Vol.49, p.23-34
笠井美青・池田学・藤澤和範・松田昌之・鈴木雄介 (2008):航空レーザー測量データから作成された

DEM の解析に基づく地すべり地形発達プロセスの 推定,地すべり学会誌, Vol.45, No.2, p.118-124 鈴木隆司・内田太郎・田村圭司(2009): 深層崩壊斜

面の特定に向けた地盤構造調査法,土木技術資料, Vol.51, No.7, p.8-13

図-4 斜面勾配の分布

図-5 固有値比の分布