3 次元個別要素法を用いた逆グレーディング現象の再現とそのメカニズム

名古屋工業大学	学生会員	\bigcirc	舘井	恵
名古屋工業大学	学生会員		福間邪	隹俊
名古屋工業大学	正会員		前田俊	書—

1. はじめに

石礫型土石流では巨礫の先端集中現象,及び堆積層の 上部に向かって粒径が大きくなる現象(逆グレーディング現 象)が知られている¹⁻²⁾、逆グレーディング現象が起こると、流 れ表面に浮き上がった巨礫の衝突により、堰堤の上部が危 険になる.また,既報³⁻⁶⁾では2次元個別要素法(DEM)結果 から、堰堤に作用する衝撃力は、大きな振動を伴い遷移す ることが分かった.

本論文では2次元個別要素法と模型実験による巨礫の先 端集中現象及び逆グレーディング現象のメカニズムの再検 討と3次元個別要素法による逆グレーディングの再現につ いて報告する.

2. 模型実験概要

実験装置概要図 ً ≥−2 図−1 粒度分布(良配合)

図−1 に実験装置の概要を示す. 傾斜角が可変なアクリ ル板(側面)及びアルミ板(底面)から成る斜路を用い た. 斜路の上流部に試料箱を設置し、試料を詰めた状態 で前方のアルミ板を開けて試料を崩壊させ、流下挙動を 観察した.崩壊試料には比重が土粒子に近く,可視化し やすいアルミナボールを用いた. 崩壊試料には D=3, 6, 10.30mm を用いて図-2 の正規分布に従うように配合し た試料(良配合試料)を使用した.

河床は D=3mm の粒子固定床とし、斜路の傾斜角度は 試料の安息角の20度とした.斜路と平行に設置した高速度 カメラで流れを撮影し,輝度差累積法による PIV (Particle Image Velocimetry) 法を用いて速度分布を求め、ひずみ 速度分布を算出した.

3. 数值解析概要

3.1 2 次元個別要素法

2次元斜面(流下方向にx軸)における粒子群の流下に関 する DEM 数値解析に用いた主なパラメータの詳細は既報 7)に詳しい.

上流の試料箱(長さ15m, 高さ7.5m)に最密な試料を作成 し傾斜に対応する重力加速度を与え、試料箱前面の壁を取 り去ることで崩壊した試料の流動挙動を再現した. 傾斜角度 は試料の安息角の 20 度, 緩傾斜の 10 度, 急傾斜の 30 度 の3種類とし、円形粒子のみを用い、粒度分布は最小・最大 粒径の範囲内において重量の対数正規分布に設定した. 実験と同様に粒度の影響を考慮するため, R_D(=D_{max}/D_{min})= 10 のケースについて解析を行った. 河床には崩壊試料と 同じ物性の粒子を固定し粗度を設けた.

3.2 3 次元個別要素法

パラメータは基本的に2次元個別要素法と同じである.た だし、ばね定数を線形から非線形に変更した.

模型実験装置と似た斜路を用いた. 斜路は幅 2.5m 長さ

100m, 試料箱は長さ7.5mとし粒子は約4000個とした. 側面 は板要素にし、河床には粒子を固定し河床粗度を表した.2 次元個別要素法と同様に上流の試料箱に自由落下で作成 した試料に傾斜に対応した重力加速度を与え,前方の板要 素を取り除いて崩壊した試料の流動挙動を再現した. 逆グ レーディングを観察しやすくするため崩壊試料は半径 0.2m と0.5mのみの2粒径試料とした. 傾斜角は25度, 試料は円 形粒子とした.

4. 逆グレーディング現象のメカニズム

本報告では、広い粒度分布を持つ試料を用いて、模型実 験と2次元個別要素法により逆グレーディング現象について 検討した結果を示す. 既報 3)では逆グレーディング現象や 大径粒子の先端集中には河床粗度が大きい必要があること が分かっている.

4.1 逆グレーディング現象の再現の確認

先端集積の様子(上図),中腹部の分級の様子(下 図-3 図)(実験:良配合試料)

右図:深度方向にとったメッシュ単位の粒度分布

図-3 に良配合試料の中腹部及び,先端部における流れ の様子(実験)を示す.流れの先端部では、粒径の大きな粒 子が集積しており、中腹部では河床付近から表層に向けて 粒径が大きくなっており逆グレーディング現象が起こってい る.

図-4 には、河床粗度の大きな粒子固定河床において、 着目メッシュ(2.0m×0.5m)毎の粒度分布を,時間と位置 x, yを変えて調べた結果を示す(解析). 崩壊前の試料箱の中 心付近(t=0.000s, x=-7.0m),崩壊後の流れの中腹 (t=15.867s, x=46.7m),流れの先端部(t=15.867s, x=70.5m)である(●:上層部,△:中央部,□:下層部).崩 壊前は深度方向にほぼ同じである.一方,流れの斜路中腹 では河床から表層に向かうにつれて粒径の大きい粒子が多 くなり,小さい粒子が少なくなる.また,流れの先端部では 細かな粒子は存在しないといえる.

4.2 傾斜角の違いによる影響

図-5 には、傾斜角の異なる 3 種類の斜面の任意の時間 の様子(左)と任意の箇所の粒度分布(右)を示す. 傾斜角 が安息角の 20 度では表層付近に大径粒子が、河床付近に 小さい粒子が集まり、逆グレーディング現象が生じている. 一方、傾斜角が緩傾斜の 10 度、急傾斜の 30 度では逆グレ ーディング現象が生じていない.

図-6 は傾斜角の異なる3 種類の斜面の任意の時間の粒 子単位の応力分布(左)と配位数の頻度分布(右)である。 配位数とは一粒子あたりの接点数のことで,本論文では,力 を伝えている接点のみを数えた. 黒い粒子ほど分担している 応力が大きい. 緩傾斜では(上段図), 応力鎖が, 密にしか もランダムに成長しており,応力が大きく一様に部分してい る.一方,急傾斜では(下段図),応力の大きい粒子が少な く,応力鎖の形成度は低い.安息角に近い流れでは(中断 図),斜面に垂直方向から斜め上流方向に,応力の高い粒 子が連なった「応力鎖」が,発生している.しかも,応力鎖は 大径粒子に集まっているようである. そこで, 本報告では, 配 位数のうち,各粒子の中心より上側の配位数(N_{cf above})と下 側(N_{cf below})の配位数をそれぞれ棒グラフにした. 逆グレ ディング現象が生じた安息角流れでは(中断図),明らかに, 粒径が大きくなるほど下から力を伝える配位数が卓越してい る. 一方, 緩傾斜(上段図)では中程度粒子に配位数が集 中し,急傾斜(下段図)では配位数の値が安息角流れ(中断 図)の半分程度とかなり小さい.

つまり、逆グレーディング現象が生じるためには安息角付 近の傾斜である必要がある.傾斜が緩いと流下距離が短く、 すぐ堆積してしまい、傾斜が急だと粒子の接触が少ない.そ のため緩傾斜や急傾斜では逆グレーディング現象が生じな いといえる.粒状体のみの流れで逆グレーディング現象が 生じたことから、この現象は粒子同士の接触によるものであ る.つまり激しい衝突のような接触ではなく、河床付近で粒 子集合体のせん断現象が発生し、応力鎖が形成されること が逆グレーディング現象の引き金となるといえる.著者らは、 粒度変化を伴う粒子集合体の構成モデルも開発している 8

図-7 3 次元個別要素法による逆グレーディング再現の 様子(左上:先端部,中;全体図,右下:中腹)

図-7に3次元個別要素法による解析結果を示す. 左上の先端 部の拡大図や右下の中腹の拡大図より,2粒径試料において大 きな粒子の先端部への集中と浮きあがり現象の再現ができた. 今後は広い粒度分布を持つ試料において逆グレーディング現 象の再現を行い,3次元でのメカニズムの説明とそれの砂防事 業における効率的な利用を試みる.

参考文献: 1) 高橋保: 土石流の機構と対策, 近未来社, 2004, 2) Bagnold: Sedimentology, 10, pp.45-46, 1968. 3) 平林,福間,前田: 土木学会応用力学論文集 Vol.11 :2008, 4) 福間他: 第44 回地盤工学研究発表会: 788-789, 2009, 5) 福間他: 第43 回地盤工学研究発表会: 1017-1018, 2008, 6) 平林他: 第42 回地盤工学研究発表会: 1991-1992, 2007, 7) MAEDA, K. and Hirabayashi, H. : J. of Appl. Mech., 9, JSCE, pp.623-630, 2006. 8) D.M. Wood, K. Maeda and E. Nukudani, Geotechnique, 2010.