防衛大学校 〇渋谷 一,香月 智 砂防鋼構造物研究会 大隅 久,石川信隆

1 緒 言

流木捕捉工の設計においては、捕捉工の純間隔(W) と最大流木長(ℓ_{max})の比(W/ℓ_{max})が 1/2 以下となるよう 設計することと指針¹⁾により定められている.しかし、 その捕捉メカニズムについての研究はあまり見当たら ず、よって基準の背景となるメカニズムを考察できな い現状にある.

そこで本研究は、流木捕捉工の捕捉効果について検 討する基礎的段階として、個別要素法を用いたシミュ レーション解析を行い、別途行った模型実験²⁾と比較 し、その適用性を検討したものである.

2 解析手法

2.1 解析手法の概要

本解析では、個別要素法に円柱形要素を導入³⁾する ことで流木および捕捉工柱材をモデル化し、水路を三 角形の平面要素を用いてモデル化した.水の流れは次 の流体力モデルを用いて表現した.本解析における運 動方程式の解法や接触判定の要領は、既報³⁾のとおり である.**表-1**に解析で用いた主要なパラメータを示す.

2.2 流体力モデル

本解析においては計算負担を軽減するため、以下のように簡略化して各要素に流体力を与えるものとした.

まず、円柱形要素が流水から受ける流体力は、円柱の中心軸上にある5点を代表点(積分点)とし、各代表点における速度と流水の速度との相対速度からそれぞれ流体力を算出し、Gauss-Legendreの積分公式を用いて積分することにより、円柱形要素の重心点に作用する流体力として評価した.すなわち、要素 iの局所座標系における、積分点jに作用する流体力 \mathbf{f}_{Wij} は、後述の流速分布モデルを用いて算定した流速 $\mathbf{U}_{ij}(\mathbf{U}_{ij}^{T} = [U_{xij} \ U_{yij} \ U_{zi}])$ をもとに、次式により表す.

$$\mathbf{f}_{Wij} = \frac{1}{2} C_{\rm D} \rho A_{ij} \begin{vmatrix} \dot{u}_{\rm Rxij} & \dot{u}_{\rm Rxij} \\ \dot{u}_{\rm Ryij} & \dot{u}_{\rm Ryij} \\ \dot{u}_{\rm Rzij} & \dot{u}_{\rm Rzij} \end{vmatrix} + \mathbf{f}_{\rm Bij}$$
(1)

ここで、 $C_{\rm D}$:抗力係数、 ρ :水の密度、 A_{ij} :積分点 jの重み w_j をかけた要素iの流れ方向への投影面積、 $\dot{u}_{\rm Rxij}, \dot{u}_{\rm Rxij}$; $\dot{u}_{\rm Rxij}$:それぞれ要素iの積分点jにおける流 水の速度 \mathbf{U}_{ij} との相対速度ベクトルのx, y, z軸方向成分、 $\mathbf{f}_{\rm Bij}$:要素iの積分点jに作用する浮力.

2.3 流速分布モデル

流木の捕捉時においては,捕捉工および捕捉された 流木により堰上げが生じることや,射流から常流に移 行することによる乱れが発生することから,次の手順 により流速を与えるものとした.

表─1 解析バフメータ		
項目		値
流水	初期流速 U0	0.8 m/s
	初期水深 h_0	8 mm
	抗力係数 CD	1.0
要素間 ばね	法線方向ばね定数 K _n	1.0×10 ⁶ N/m
	接線方向ばね定数 K _s	1.5×10 ⁵ N/m
	減衰定数 h	0.2
	粘着力 c	0 N
	摩擦角 tanφ	0.404
計算条件	時間刻み Δt	1.0×10^{-7} s

まず,流木捕捉による水深h'は次式により算定する.

$$h' = \frac{H - h_0}{1.3} \left(\frac{\sum A_{di}}{A_0} - 0.2 \right) + h_0 \tag{2}$$

ここで,H: 捕捉工高さ, h_0 : 初期水深, $\sum A_{di}$: 捕捉された流木の投影面積の総和, A_0 :流路断面積(A_0 =WH).

次に,流水の乱れや波打ちを考慮し,堰上げ水深 h_s を算定した.堰上げ水深 h_s は正規分布に従うものとし, [h', $h'+\Delta h$]において平均値が $h'+\Delta h/2$ で標準偏差が $\Delta h/4$ として,乱数を用いて定めることとした.ここで, せき上げ高 Δh は,指針¹⁾に示されている堰上げ水位の 計算式を元に,概略値として次式より算定した.

$$\Delta h = \frac{U_0^2}{4g} \tag{3}$$

ここで, U₀: 初期流速.

要素の各積分点に作用する流速 **U**_{ij}の **x** 軸方向(流下 方向)成分 *U*_{xij}は, **図**-1 に示す流速分布モデルを用い て,次式により与えるものとした.

$$U_{\mathrm{x}ij} = \frac{z_{ij}}{h'} (\alpha - \beta) \overline{U} + \beta \overline{U}$$
⁽⁴⁾

ここで, z_{ij} :積分点の水路床からの高さ, \overline{U} :水深h'の変化に対応して流量保存より求まる流速,a, β :流速分布を決める係数であり, $\mathbf{2}$ -1に示すように,流量保存に基づき,次式により算定した.

$$\alpha = \alpha_0 - \frac{1}{3} \left(1 - \frac{h_0}{h'} \right) \left(\alpha_0 + \beta_0 \right) \tag{5}$$

$$\beta = \beta_0 - \frac{2}{3} \left(1 - \frac{h_0}{h'} \right) \left(\alpha_0 + \beta_0 \right)$$
 (6)

実験における捕捉の状況を観察すると、水流に乱れ が生じ、流木塊が上下に動揺する.このため、流下方 向の鉛直方向に対しランダムな乱れ成分ベクトルを与 えることとした.すなわち、流速 U_{ij} のうち z 軸方向(流 下方向の鉛直方向)成分 U_{zij} は、正規分布に従うもの とし、 $[0.3U_{xij}, -0.3U_{xij}]$ において平均値が $0.15U_{xij}$ で標 準偏差が $0.3U_{xij}/4$ として、乱数を用いて定めることと した.なお、流速 U_{ij} の y 軸方向(流下方向の河川横断 方向)成分 U_{yij} については、実験において横断方向の 動きがほとんど見られなかったことから、 $U_{yij} = 0$ とし て扱うこととした.また、水深 h'が、限界水深 h_c 以下 の範囲において乱れを与え、 $h' > h_c$ においては乱れを 与えないこととした.

2.4 解析ケース

解析ケースは,模型実験²⁾と同じく,流木直径は3mm として,間隙最大流木長比 *W*/ℓ_{max}=1/5, 1/3, 1/2, 3/4 につ いて,それぞれ流木長を6, 12, 18cm と変化させて,捕 捉シミュレーションを行った.

3 シミュレーション結果

3.1 捕捉状況

図-2 に, *ℓ*=12cm, *W*/ℓ_{max}=1/2, 3/4 における解析結果 の捕捉状況を,実験結果と比較して示す.解析結果は, 実験と同様に*W*/ℓ_{max}の増加に伴い捕捉される本数が減 少している.また,流木の堆積した形状や流木同士の 絡み合いを全体的に良く表現できている.

3.2 捕捉率と間隙最大流木長比 №/2 тах の関係

図-3に、捕捉率~ W/ℓ_{max} 関係について、実験結果と 解析結果をそれぞれ示す.これより同じケースでの捕 捉率は概ね 5~30 ポイント程度の差異があるが、実験 結果と同様に、概して W/ℓ_{max} の増大に伴って捕捉率の 低下傾向がある.また、流木長 $\ell=12$ および 18cmの捕 捉率と W/ℓ_{max} の関係に比して、 $\ell=6$ cm では全体的に低 捕捉率の傾向となる様子も再現できている.

また、平均値で比較すると、実験結果との差が大き いところでも、 $\ell_{max} = 18$ cm で $W/\ell_{max} = 1/2$ における15.0% 程度であり、全体的に良好にシミュレートできている.

4 結 言

本研究の成果をまとめると以下のようになる.

- (1) 流速分布モデルを適切に表現することで,流木捕 捉時の流木の複雑な動きや絡み合いを,概ね再現す ることができた.
- (2) 捕捉率~W/ℓ_{max}関係について,流木長および間隙最 大流木長比の変化に伴う捕捉率の変化を概ね良好に 再現することができた.

(b) W/ℓ_{max}=3/4 図−2 捕捉状況の比較(ℓ_{max}=12cm)

参考文献

- 国土交通省砂防部,国土交通省国土技術政策総合研究 所:土石流・流木対策設計技術指針及び同解説,2007.11
- 西田政隆,渋谷一,香月智,大隅久:流木捕捉工による 流木長の混在する流木群の捕捉性能に関する実験的研究, 第 36 回土木学会関東支部技術研究発表会講演概要集, I-59,2009.3
- 渋谷一,原木大輔,香月智:3次元個別要素法による透過 型砂防えん堤の流木混じり土石流の捕捉シミュレーション,応用力学論文集,土木学会,Vol.12, pp.449-460, 2009.8