透過性を有するブロック積砂防堰堤の捕捉機能に関する解析的検討

原田 紹臣,藤本 将光,中村 達也,里深 好文(立命館大学理工学部) 〇佐藤 哲也,橋口 聡太郎,神野 忠広 (共和コンクリート工業株式会社) 水山 高久(京都大学名誉教授)

1, はじめに

本研究では、山脚固定等の根固め等の機能が期待される 透過性を有する砂防堰堤(ブロック積砂防堰堤¹⁾)背面の堆 砂面における捕捉機能について新たに提案する.なお、着 眼する機能については、地下水を速やかに堰堤本体より排 水させた不飽和の状態を維持させた堆砂面において、水と 土砂の分離を期待するものである.そこで、これらの機能 に関して、既往の砂防堰堤に堆砂している実在の土砂を採 集して条件を設定し、解析的に検討して考察する.

2, 解析概要

今回の検討に用いる堆積部中における不飽和浸透過程も 考慮した土石流等の侵食堆積予測モデル²については,不飽 和堆積物中における浸透過程とその堆積物上部を通過する 洪水や土石流等による侵食堆積過程について同時に計算が 可能である.さらに,堆積物の表面を介した流動層と堆積 層との水移動についても考慮しており,河床表面内外の圧 力差と堆積層の透水係数を用いて,水移動量を計算してい る.また,河床勾配aの鉛直二次元場を対象として,x軸を 河床基岩面と平行にとり,それと垂直なz軸をとって,スタ ガードスキームにより離散化している(図-1:左).なお, 圧力水頭 ψ と体積含水率 θ 及び透水係数 K との関係につ いては,式(1)に示すRichard式が成立するものとしている.

$$\left(\frac{\partial\theta}{\partial\psi} + \beta S_s\right)\frac{\partial\psi}{\partial t} = \frac{\partial}{\partial x}\left\{K\left(\frac{\partial\psi}{\partial x} - \sin\alpha\right)\right\} + \frac{\partial}{\partial z}\left\{K\left(\frac{\partial\psi}{\partial z} + \cos\alpha\right)\right\}$$
(1)

ここに、t は時間、z は河床位、 S_s は比貯留係数、 α は河床 勾配、 β は飽和時に 1 または不飽和時に 0 となる係数であ る.また、圧力水頭と体積含水率の関係及び透水係数は、 それぞれ次のように表される.

$$\theta = \left(\theta_s - \theta_r\right) \left(\frac{\psi}{\psi_0} + 1\right) \exp\left(-\frac{\psi}{\psi_0}\right) + \theta_r$$
(2)

$$K = K_s \left\{ \frac{\theta - \theta_r}{\theta_s - \theta_r} \right\}^m \tag{3}$$

ここに, θ_sは飽和体積含水率, θ_rは残留体積含水率, ψ₀は水 分特性曲線の変曲点における圧力水頭, K_sは飽和透水係数 及び m は係数である.なお,流動層及び堆積層との境界 (河床面)における水交換フラックスw_iを求める際に用い

図-1 浸透流解析の変数配置(左)と水浸透フラックスを求める際の変数配置図(右)

る変数の配置を図-1(右)に示す.水交換フラックスは、 一定の値を持つ層厚 Δz と河床面位置までの層厚 Δz との関係 により、次のように表される. w_i は、河床面に一番近い堆 積層内部の地点における圧力水頭 y_{iib1} を用いて、

$$w_i = -K \left\{ \frac{h_i \cos \alpha - \psi_{i,j_{b-1}}}{\Delta z' - \Delta z / 2} + \cos \alpha \right\}$$
(4)

と表される.ここに、*h*_iは流動深、*ψ*_{i,b-1}は河床面に一番近い 堆積層内部の地点における圧力水頭である. また、流動層 における流れの基礎方程式は、一様砂礫を対象とした一次 元非定常流れのものを用いる.全流量の質量保存則、土石 流中の砂礫の質量保存則及び流れの運動方程式は

$$\frac{\partial h}{\partial t} + \frac{\partial uh}{\partial x} = w_i + i_b \left\{ C_* + (1 - C_*) \frac{\theta}{\theta_s} \right\}$$
(5)

$$\frac{\partial Ch}{\partial t} + \frac{\partial Chu}{\partial x} = i_b C_* \tag{6}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{u w_i}{h} = g \sin \alpha - \frac{\partial (z+h)}{\partial x} g \cos \alpha - \frac{\tau_b}{\rho h}$$
(7)

である.ここに、h は流動深、u は断面平均流速、ib は堆積 物の侵食または堆積速度、C*は堆積物中の表面における土 砂濃度及び河床の堆積濃度(同等)、C は土石流中における 土砂濃度、g は重力加速度、 σ は河床せん断力、 ρ は水の密 度、wi は式(4)によって求められる.ここで、本解析モデ ルにおける不飽和浸透過程に関する実験結果と解析結果を 比較した筆者らの検証事例²⁾(各ケースの浸透過程に関する 実験結果と解析結果との計測時間毎における浸潤面の比較) を図-2に示す.図-2に示すとおり、不飽和浸透流の観測と

図-3 飽和(上)と不飽和状態(下)を対象にした検討モデル

解析値の比較により、両者は概ね一致していることが確認 されており、モデルの妥当性が示されている.

次に、本解析モデル²⁾を用いて、既設の不透過型砂防堰堤 において堆砂している土砂を採集してきた試料(実験土) を対象に、図-3に示す仮定した2つの条件を対象に検討した. なお、図-3(上)のケースは、不透過型砂防堰堤における 水抜工の排水性能が顕著に低下して堆砂土が飽和している 状態を想定している.一方、図-3(下)のケースは、ブロ ック積砂防堰堤に代表される透過性を有する砂防堰堤にお いて期待される堆積物の排水性能により、堆砂土が不飽和 である状態を想定している.これらのケースを対象に、土 石流等の通過時における各堆砂面への水の浸透に伴う水と 土の分離による効果について、解析的に検討する.

本研究では、土石流等が一般的な Regime 理論を参考に、 流量に応じて一定の流下幅を形成して流下するものと仮定 し、簡単のため鉛直二次元場を対象として解析する.また、 試料を採集した渓流において、現地の状況より推定される 流出条件を設定し、単位幅流路(延長 200 m、堆積層厚 5 m) を対象に不飽和浸透過程及び流水の流動過程について解析 した.また、先行研究 ³を参考に、比貯留係数 S_s を 1.0、係 数 m を 3 とし、 $\Delta x = 100$ cm、 $\Delta t = 0.001$ s として 計算した.なお、単位幅あたりの最大土石流ピーク流量を $Q_{pm} = 1.0 \text{ m}^3/(\text{s}\cdot\text{m})$ とし、一定流量で堆砂面上流部より 100 秒 間供給することとした.また、堆砂面の勾配を5 度、河床の

図-5 透過性を有する砂防堰堤において期待される堆砂面水抜きフィルター効果による細粒土砂等の捕捉機能

粒径を10.0 cm 及び内部摩擦角を37 度とし、堆積層表面にお ける容積濃度を0.6、流入する土石流中の土石流濃度を0.1、 マニングの粗度係数を0.05 m⁻¹³s とした.

計算の結果得られた100秒後の圧力水頭の分布と河床縦断 形状を図-4 に示す. なお、図-4(上)は堆砂土が飽和して いる状態で土砂を含んだ流水が上部を通過した場合であり, 堆砂土の飽和状態により堆砂土への水への浸透が見られず, 供給した約4分の1程度の土砂が堰堤の上部を通過して捕捉 されない結果となった、一方、図-4(下)は不飽和土の堆 砂面を通過する場合であり、こちらは、堆砂土へ多くの水 が浸透し、土砂と水が分離して土石流等が堆砂面で停止す ることがわかった.これらの結果より、堰堤の背面におけ る堆砂土の水分状態(含水比)により、急勾配区間での山 脚の固定を目的とした床固め工においても, 従来の底面水 抜きスクリーンと同様の堆砂面(底面)水抜きフィルター 効果としての効果が期待できることが示唆された.なお, この効果により、近年課題となっている土砂・洪水氾濫対 策 3における細粒土砂の処理についても、透過性を有した砂 防堰堤の堆砂面におけるフィルター効果による捕捉が期待 できるものと考える(例えば、図-5).

参考文献

- 1) 建設コンサルタンツ協会: ブロック積砂防堰堤, 活用事例集, 2023.
- 2) 原田紹臣・里深好文:堆積物中の不飽和浸透過程を考慮した侵食 に関する研究,河川技術論文集, Vol.18, 2012
- 3) 原田紹臣ら:土砂・洪水氾濫対策の施設規模における計画規模の 設定方法に関する考察,河川技術論文集, Vol.28, 2022.