天竜川水系における水害・土石流被害簡易表示システムの開発

国土交通省 中部地方整備局 天竜川上流河川事務所 椎葉秀作,大森秀人,杉山和也 アジア航測株式会社 ○坂口宏, 梶原あずさ, 江口友章

1. はじめに

近年、鬼怒川の堤防決壊による浸水被害や広島県の土 石流被害など、水害や土砂災害が頻発しており、天竜川 水系においても住民の被災リスクが増加していると考え られる。

水害・土砂災害に対し、特に人的被害を最小限にとど めるためには、住民が居住地等の危険性を認識し、自主 的な避難行動を取れるような情報提供を行っていくこと が重要である。

本稿では、水害や土砂災害に対する流域住民及び企業 の危機意識の向上を目的とし、スマートデバイスにより 簡易に家屋や人命喪失の危険度を判定するシステムを検 討した事例を報告する。

2. システムの概要

本システムは、スマートデバイスでの動作を対象とす るため、複数の OS (iOS・Andoroid・Windows) でユーザ 一の利用が可能となるように、WEB ブラウザー上で動作 するアプリケーションを開発することとした。

データ通信は、セキュリティーを考慮し、SSL 認証によ る暗号化通信とし、セキュアな環境でユーザーからのリ クエストに応答させることとした。

なお、本システムの GIS およびデータベースは、更新 の容易性を考慮し、オープンソースのソフトウェアーを 選定した(GIS: Leafret、DB: PostgreSQL)。

図-1 鬼怒川の浸水被害(平成 27 年 9 月,常総市) 出典;国土交通省関東地方整備局

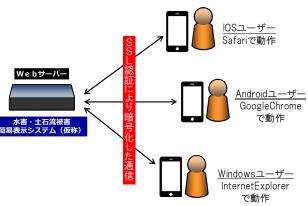


図-2 WEB アプリケ-ションの構築イメージ

十石流 の高さ

0.2m

0.2m

544m

3. システムの主な機能

本システムの構築目的をふまえ、水害・土砂災害の「危険性の周知」と「被害想定」の視点で機能を検 討した。主な機能を表-1に示す。

表-1 システムの主な機能

水害・土砂災害の危険性の周知		
機能		概 要
1	危険区域の表示	浸水想定区域、土砂災 害警戒区域・特別警戒区 域(土石流、急傾斜、地 すべり)を表示する機能
2	危険区域情報表示	危険区域の情報(現象、 渓流名など)を表示する 機能
3	危険区域の抽出	GPSによる現在地や指定 した位置において危険区 域をリスト表示する機能
水害・土砂災害の被害想定		
機能概要		
1	建物に対する被害想定	「水害」および「土石流」に 対する家屋被害を想定す る機能
2	人命に対する被害想定	「水害」および「土石流」に 対する人的被害を想定す る機能
3	シミュレート	土石流等の規模が2倍・ 1/2倍時における危険度 の再判定機能

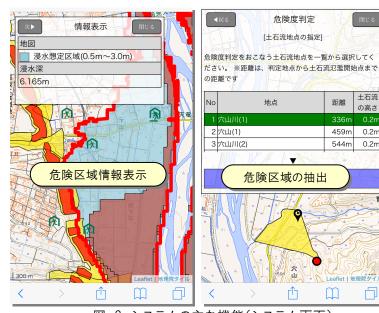


図-3 システムの主な機能(システム画面)

4. 水害・土砂災害の被害想定機能の特徴

水害・土砂災害の被害想定機能の特徴を以下に示す。

- ① 使用している端末の GPS 情報を取得し、現在地の危険度を判定できる。
- ② 水害・土砂災害の危険度を同時に判定することができる。
- ③ 屋内・屋外での被害を選択して危険度を判定することができる。
- ④ 危険度の判定結果は、イメージ図・説明文・被害の度合いを 示す数値で表現し、様々なユーザーが認識しやすい表現を採 用している。
- ⑤ 土石流の規模(2 倍もしくは 1/2 倍)を変更し、危険度を再 判定する機能を付加している(シミュレート機能)。

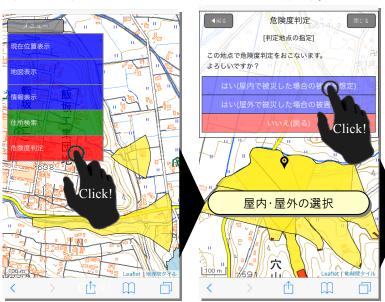


図-4 スマートデバイスによる危険度判定の流れ

なお、本システムの危険度は、「水害:浸水深」「土石流:土石流の高さ」を用いて判定している。 ここで、土石流の高さについては、土砂災害防止法基礎調査で公示されている特別警戒区域の数値を 使用しているが、警戒区域については土石流の高さについて設定されていない。このため、砂防基礎調 査結果および二次元氾濫シミュレーション結果を組み合わせ、警戒区域に対する土石流の高さの設定を 試みた。検討結果を以下に示す。 ※ただし、警戒区域に数値を持たせるか否かは今後十分な検討が必要

■警戒区域の土砂堆積深

$D_Y = \frac{V_0 - V_R}{A_V - A_R}$

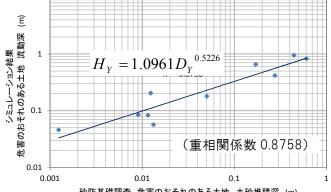
ここに、

D_v: 警戒区域の土砂堆積深

A_R:特別警戒区域の面積 (基礎調査結果)

A_Y: 警戒区域の面積

(基礎調査結果) V_0 : 流下する土石等の量 (基礎調査結果)


■堆積深から流動深への変換

 $H_Y = 1.0961 D_Y^{0.5226}$

ここに、

 H_Y :流動深

Dy:警戒区域の堆積深

砂防基礎調査 危害のおそれのある土地 土砂堆積深 (m)

図-5 警戒区域の堆積深とシミュレーションの流動深の関係

5, おわりに

本システムは、アンケート調査により一部ユーザーのニーズを把握し、システムの操作性・レスポンス や危険度表現方法の妥当性を確認している。今後は、関連機関や住民に対し、さらに多くのユーザーニー ズを収集・分析し、追加すべき機能や表現方法等の精査を行った上で、本格運用に向けたシステムの整備 が必要である。