流動化ソイルセメントについての一考察

株式会社インバックス 秋山祥克 橘木貞則 ○織田哲暢

1 はじめに

近年砂防工事において，現地発生土砂の有効活用と いう観点から，砂防ソイルセメントの施工事例が増加 している。

砂防ソイルセメント工法の一種である INSEM 工法 は，ゼロスランプの INSEM 材を転圧し施工するとい う点が特徴である。そのため，効率良く施工が行える大断面の場合に採用されることが多い。対して小断面 の場合には，ソイルセメントを有スランプ化，流動化 させることにより施工性が向上すると考えられる。

そこで今回，流動化ソイルセメントの試験を実施し，
考察を行った。

2 試験方法

今回試験に用いた土砂（写真1；以降土砂 A と称す） は砂礫質粘性土に分類されるものであり，従来の INSEM材に活用する場合は適応性の低い土砂である。 その物性値（表 1）をみれば，細粒分が 60.6% と多く，最大乾燥密度は $0.969 \mathrm{~g} / \mathrm{cm}^{3}$ と低いため，適正な強度発現が得られる含水比は，図1の模式図に示すようにゼ ロスランプ領域ではなく流動化領域にある土砂と考え られる ${ }^{1)}$ 。
表2に配合試験ケースを示す。使用セメントには高有機質土用固化材を用いた。試験含水比は従来の INSEM 材同様に転圧できる限界と判断された含水比 （写真 2），並びにソイルセメントが十分にワーカビ リティーを得られ，施工時にバイブレーターを要しな い程度まで流動化させた状態（写真 3）を確認して含水比を設定し，供試体を作製した。流動化状態のケー スで用いるモールドは，通常のモールド，並びに排水用の穴の開いた有孔モールド（写真 4）の 2 種類を使用した。なお，有孔モールドには透水性のある布を敷 き詰めて使用した。

盏険项目			$\pm{ }^{\text {a }}$
	䜌分	A 1204	17.0
	虽分		22.4
	シルト－絬土分		60.8
		A 1202	2.762
	表軑比量（8／cm ${ }^{\text {a }}$ ）	A1109	1.74
			1.28
	吸水事（\％）		39.1
4．組骨林の醄度及び吸水事嗢険	表倝比量（ $/ / \mathrm{cm}^{3}$ ）	A 1110	1.59
			1.01
	吸水事（\％）		57.2
		A 1210	0.969
	最通合水比（\％）	A1210	44.0
		A 1203	89.2

図1 ソイルセメント性状模式図

表 2 配合試験ケース

配合 ケース	母材	セメント量 $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	配合試験ケー⿰⿺乚一匕 $(\%)$	使用モールド
Case－1	土砂 A	200	70.0	通常モールド
Case－2 Case－3	土砂 A	200	92.0	通常モールド 有孔モールド

写真 1 士砂 A

写真 2 転圧できる程度のソイルセメント

写真 3 流動化状態のソイルセメント

写真 4 有孔モールド

3 試験結果及び考察

表3に材齢7日圧縮強度試験結果を，図2にそのグ ラフを示す。Case－1 ではセメントによる明膫な硬化が見受けられず，その強度は $0.54 \mathrm{~N} / \mathrm{mm}^{2}$ と低い。一方，流動化させたソイルセメントは，同じセメント量である が $2 \sim 3$ 倍程度の高い強度を発現した。これは，当初想定されたように流動化領域においては，明瞭なセメン ト水和反応が得られたものと考えられる。

3.1 使用モールドの違いによる比較

明瞭なセメントによる水和反応が確認できた，流動化ソイルセメントのケースをみると，通常モールドに て作製したケース（Case－2）と比較して，有孔モール ドにて作製したケース（Case－3）は，1．2 倍程度の圧縮強度が得られている。有孔モールドで作製した供試体をみると，供試体作製後初期水和の段階で写真5の ように透明な水が多く排出される現象がみられた。こ れをふまえて考察すると，有孔モールドの強度が伸び た原因は，セメント水和反応に必要のない余剰水が時間と共に排出され水セメント比が低下し，強度発現性 が向上したものと考えられる。ここで，ソイルセメン トは土砂そのものが水を吸収するため，コンクリート でいうところの水セメント比の概念を数値化すること は難しいが，少なくとも初期水和の段階において余剰水が排出される現象は確認されていることから，水セ メント比が低下したことには変わりがないと考えられ る。

表 3 材齢 7 日圧縮強度

配合 ケース	含水比 $(\%)$	性状	使用モールド	$\sigma 7$ $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
Case－1	70.0	転圧可能	通常モールド	0.54
Case－2	92.0	流動化	通常モールド	1.22
		有孔モールド	1.50	

図2圧縮強度の比較

4 おわりに

今回得られた試験結果をふまえれば，従来，流動化領域でなければ明瞭なセメントによる硬化が期待でき ない土砂を INSEM 材として活用する際には，クラッ シャランなどで改良を行ら必要があった。一方，流動化ソイルセメントとして活用する場合は，改良を行う必要はなく，明膫なセメントによる硬化を期待するこ とができる。
さらに，透水性のある型枠を用いれば，余剰水の排出が期待できるため，強度発現性の向上及び，配合に おける含水比管理が簡素化できると考えられる。

つまり，流動化ソイルセメントは，転圧を必要とせ ず，余剰水を排出することを勘案すれば，現場におけ る含水比管理が容易になると言え，流動化ソイルセメ ントの製造及び施工の合理化，簡便化が図られるもの と考えられる。
しかしながら，本試験は 1 種類の試料を用いて行っ たものであることから，今後様々な土砂において試験 ケースを増やすことで，流動化ソイルセメントの幅広 い活用につなげていきたいと考えている。

写真 5 透水性のある型枠からの排水状況事例
参考文献 1）嶋ら：INSEM 材の水和反応を保証する最小管理強度の導入，砂防学会誌，Vo1．68，No．2，p．14－22， 2015

