LADOFモデルによる河道閉塞の長期的な越流侵食予測結果の応急対策計画への反映について

国土交通省近畿地方整備局六甲砂防事務所 神野忠広、木下篤彦^{※1} 一般財団法人砂防フロンティア整備推進機構 ○森 俊勇、佐光洋一、屋木わかなアジア航測株式会社 臼杵伸浩、柏原佳明

(現所属 ※1:国土交通省近畿地方整備局 建設専門官)

1. はじめに

平成23年の台風12号に伴い奈良県五條市大塔町 赤谷に形成された河道閉塞では、その後の台風15 号に伴い上流湛水域が満水となり越流が生じた。本 検討では、台風15号の前後で取得されたLPデータ に基づき堤体の侵食状況及び現地状況に基づき、再 現計算を行うことにより、LADOFモデルの計算条件 を決定した。

決定した計算条件を用いて、LADOF モデルによる 河道閉塞の長期的な越流侵食に伴う堤体の形状変 化の予測を行った結果、長期的には河道閉塞の下流 のり形状がおおむね一定の勾配で安定することが 明らかとなった。これらの検討結果をふまえて天然 ダム堤体の安定化に向けた恒久対策計画等におけ る施設の天端高さや根入れの考え方について検討 を行った事例を報告する。

2. 台風 15 号前後の赤谷天然ダムの侵食状況

赤谷では、台風 15 号前後に航空レーザ計測が実施されている(表1)ため、これらを差分解析することにより、災害前後の侵食状況を把握するとともに、LADOF モデルの再現性を確認するためのデータとした(図1)。

計測日

台風15号前 | 平成23年9月8日~ | 中日本航空株式会社

表1 使用した航空レーザ計測データ

計測機関

1mDEM

					(奈良県五条土	木事務所)		╝			
台	115	号後	平成23年	9月24日	国際航業株式	会社	1mDEN	N			
(田) 種類	550 —	0									
	530	━━台風15号前									
	510	•••••台風15号後									
		_	LP変動高		رکیمہ		- 20				
	490			Λ.			- 10				
	470										
	450										
	430										
	410										
	200										
	390										
	370	7-1-1-1-1	_		V		30				
	350			-	-	-	-40				
	0		500	1000	1500	2000	2500				
					直離 (m)						
図1 台周15号前後の縦構販形状(表次)											

図1 台風 15 号前後の縦横断形状(赤谷)

3. 再現計算

天然ダムの決壊過程は、①越流侵食による決壊、②すべり崩壊による決壊、③進行性破壊による3つの型に分類できる。過去に形成された天然ダム事例の決壊原因の多くは、「越流による決壊」であることから、今回も越流侵食による決壊過程を想定し、LADOF モデル(里深ら、2007a)に基づき、越流侵食後の形状をシミュレートした。再現計算に用いた計算条件を表2に示す。

表 2 再現計算の計算条件

X = 130001 5F 07 01 5F 08 11									
項目		単位	case1	case2	case3				
計算地形			台風15号前LPデー		データ				
刻み幅	dx	m	10						
刻み時間	dt	S	0.02						
重力加速度	g	m/s^2	9.8						
砂礫の密度	σ	kg/m³	2,650						
水の密度	ρ	kg/m³	1,000						
内部摩擦角	ф	0	35	33.9	35				
平均粒径	d	m	0.1						
堆積層濃度	c *		0.6						
側岸侵食の係数	α		1,000						
流入流量		m/s³	5.4	5.4	240				

表2に示す計算条件に基づき、実施したLADOF モデルによる天然ダムの侵食計算結果による縦断 と実績縦断を図2に示す。また、初期河床を0とし て差分した結果を図3に示す。

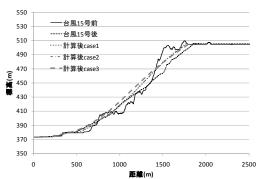


図2 再現計算による縦断(実績との比較)

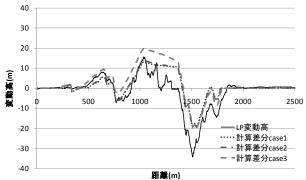
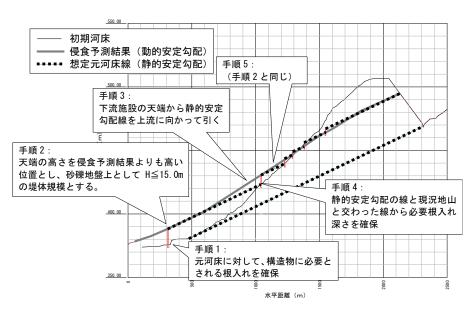



図3 再現計算結果(元河床を0とした差分表示)

図2及び図3より、今回試算した再現計算ケースでは、CASE1の再現性が高い。このため、今後の予測計算はCASE1のパラメータを基本として、流入流量条件については、できるだけ現象にあった条件を設定した。

4. 長期的な越流侵食に伴う予測計算

赤谷における天然ダム地点の 1/100 確率規模流量(砂防堰堤の設計対象)をピーク流量とし、継続時間を 24 時間、洪水開始 12 時間後に計画規模流量が発現するものと仮定した三角形ハイドログラフを与えた場合と、天然ダムを生じさせた台風 12 号相当の降雨・流量が、天然ダムに再来した場合に、天然ダム形状がそれぞれどのように変化するのかを LADOF モデルを用いて予測した。予測計算結果を図 4 に示す。

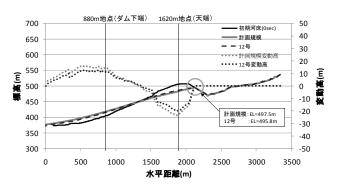


図4 計算終了時の河床

5. 長期的な堤体侵食予測を踏まえた施設規模の 検討

図4に示した長期的な侵食予測結果を動的安定 勾配、天然ダム形成前の元河床勾配(想定)を静的 安定勾配と仮定して、計画洪水による天然ダムの侵 食・堆積等に伴い、下流施設が埋没や洗堀による損 傷が生じない、効果的・効率的な施設配置及び天端 高さ、根入れ深さ等を検討した。

計画施設の天端高は、出水等により侵食された土砂の2次堆積によって埋没しない高さ以上とし、根入れは、砂礫地盤に対する値として2.0m以上確保することとした。なお、計画施設上流の堆砂域は元河床勾配(静的安定勾配)よりも急勾配に侵食されないことを前提とした。検討結果に基づく赤谷における施設配置の検討事例を図5に示す。

6. まとめ

赤谷地区に形成された天然 ダムにおける、台風15号前後 の越流侵食に伴う形状変化に 基づき、LADOFモデルの計算精 度を精度よく決定するととも に、越流侵食に伴う長期的な堤 体の形状変化の予測を行うこ とができた。これらの検討結果 を有効に活用することにより、 天然ダム越流侵食伴う下流域 の河床変動状況を踏まえた効 果的・効率的な施設配置の検討 を行うことが可能と考える。

【参考文献】

里深好文・吉野弘祐・小川紀一朗・森俊勇・水山高久・高濱淳一郎 (2007a): 高磯山天然ダム決壊時に発生した洪水の再現, 砂防学会誌, Vol.59, No.6, p.32-37