土石流堆積区間における砂防えん堤の効果〜地形再現モデルによる水理模型実験〜

1. 背景・目的
近年、施設の効率性および環境への配慮から、砂防えん堤はスリットを設けた形式が主流となっている。一般にスリット砂防えん堤の形式は、土砂の流送形態が推移の場合には堤上げスリット型となり、土石流の場合には閉塞スリット型となる。これらのえん堤は土砂捕捉メカニズムが異なるため、えん堤形式の決定の際には、土石流移動形態を正確に把握することが重要となる。
北海道内浦郡平取町に位置する開地川（流域面積70km²、流長延長70km）では、平成15年台風10号に伴う集中豪雨による災害を受けて、2号砂防えん堤をスリット化し、調節（捕獲）効果の向上を図ることとなった。えん堤頂部地点における浸水範囲は本川1/15および支川1/12であり、勾配区分上は土石流堆積区間の一部に位置する。しかしながら、えん堤溝深部およびその上流域の現地調査の結果、明確な土石流の流送形態は確認されなかった。したがって、本地点での土砂移動形態を土石流・拡流のどちらも想定されるため、2号えん堤については土石流・拡流双方に対応できることが望まれる。
本報告は、水理模型実験結果から、土石流と拡流それぞれの流送形態に対する堤上げスリット型えん堤と閉塞スリット型えん堤の施設効果についてとりまとめたものである。

2. 実験条件
2.1. 模型水路形状 図1に示す2次元地形再現モデルを使用した。
2.2. 実験ケース 施設形式は堤上げ型と閉塞型を対象として、それぞれ拡流、土石流を供給する4ケースを行った（表1）。
2.3. 実験条件 表2に示す条件の1例を示す。
2.4. ハイドログラフ 実験対象の洪水に対して、図2に示すような6段階の洪水状ハイドログラフを設定した。また、土石流はピークの流量値の終了後には発生させるものとした。
2.5. 施設概要 堤上げ型是有効高7.5cmで、スリット型は高さ7.5cm×幅6.0cmである。スリット幅は、流速によるスリットの閉塞が起こらないように、最大流速10.0cmと幅とした。一方開塞型は有効高7.5cmで、高さ7.5cm×幅25.0cmの開口部を設け、そこで鋼材を格子状に配置した。格子の間隔は現地最大縦隙比より0.0cmとした。

3. 実験結果
3.1. 土砂捕捉効果 各ケースにおける、えん堤による土砂捕捉量を図3に示す。捕捉量は堤上げ型と閉塞型で大きく異なり、閉塞型の方が土砂捕捉効果が高いといえるが、いずれのケースにおいても土砂捕捉量は基準で求められた捕捉量74,700m³よりも多くなかった。
3.2. えん堤前流出への影響 各ケースにおける、えん堤通過土砂量を図4に示す。堤上げ型では約80,000m³（供給土砂量の約50％）がえん堤を通過したが、閉塞型ではえん堤通過土砂量はほぼゼ
ロであった。そのため、閉塞型えん堤下流では大幅な荷米低下が見られた。

3.3. 流木捕捉効果 各ケースにおける、えん堤による流木捕捉率を図5に示す。堰上げ型では、スリット部を直接流木は無く、流木は閉塞型下流の砂礫堆上に堆積したのみであったため、捕捉率は7%と低かった。閉塞型では、供給した流木のほとんどがえん堤で捕捉され、捕捉率は90〜100%と高かった。

3.4. 土石流に対する捕捉効果 堰上げ型および閉塞型の土石流に対する捕捉率を図6に示す。堰上げ型では、土石流発生時に堰上げが発生するとともに、土石流の勢いが強く土砂の一部が流出したため、捕捉率は5〜15%であった。閉塞型では、土石流発生時に流木で開口部が閉塞していったため、土石流は100%えん堤で捕捉された。

3.5. 維持管理頻度 堰上げ型の流木捕捉状況を写真1, 2に示し、閉塞型の流木捕捉状況を写真3, 4に示す。堰上げ型では、流木を通じて流木によるスリットの閉塞が起こらなかった。一方閉塞型では、流量の少ない洪水初期からスリット部が流木により閉塞し、後続する土砂と流木をほとんど捕捉した。したがって、小規模出水時には流木が生産・流出しやすい状況であれば、閉塞型は堰上げ型よりも高頻度で維持管理を行う必要があると考えられる。

4. まとめ

本実験の結果、土石流堆積物における堰上げ型えん堤と閉塞型えん堤の機能比較を表3に示した。堰上げ型えん堤は、流量が緩やかに変動することにより溢水状態を形成し、土砂を捕捉する仕組みであるため、断続的に流量が変動する土石流に対しては十分な効果が得られなかった。その反面、スリット幅を広く取ることで流木による目詰まりを防ぎ、維持管理頻度の低減および下流への土砂供給を期待できる。

一方、閉塞型えん堤は、土砂・流木・土石流全てに対してほぼ100%の捕捉が可能であった。その反面、流量の少ない段階から土砂・流木を捕捉するため、中小洪水でも土砂・流木の流出が予想される溪流では、高頻度で維持管理を行う必要があると考えられる。

土石流堆積物においては、このようなえん堤の特性を踏まえ、その溪流の自然条件・社会条件に適したえん堤形式を選択することで、より安全かつ効率的な施設運用が可能になると考えられる。

5. 今後の課題

今回得た知見については、実験対象流域の溪流特性の影響を大きく受けている。したがって、上記のえん堤形式による特徴については、さまざまな条件下で検証を行う必要がある。