六甲山系における細密地形データを用いた斜面土砂生産ポテンシャル評価の一手法

国土交通省近畿地方整備局六甲砂防事務所 吉川知弘、長安勝史、久内 忠
株式会社バスコ　板野友和、森田真一、横田 浩、野田敦夫、林 聖元

1 はじめに
砂防事業における対策の実施、警戒避難の実施では、斜面崩壊の発生を、的確に予測することが重要である。しかし、対象とする斜面数が多く広範囲に分布する場合において、その中から斜面崩壊の危険性の高い斜面を的確に抽出するの
は長期間、多大なコストが必要である。
一方、近年各地で航空レーザー測量による広範かつ詳細な地形データが取得される様になってきている。
この様な状況を踏まえ、航空レーザー測量による詳細な地形データを用い、多変数解析により客観的かつ効率的に斜面
の土砂生産ポテンシャルを評価する手法についての検討を行った。
本報告は、多変数解析を用いた土砂生産ポテンシャルの評価手法および評価時に配慮した点等についてまとめたもの
である。

2 解析手法
本解析では、H7 以降の崩壊実績および地形・地質・植被データを用い、斜面の土砂生産ポテンシャルの評価を行っ
た。
なお、崩壊等の発生のし易さを発生要因の関わりにより推定する手法として、目的変数（崩壊等の発生し易さ）を説
明変数（発生要因の関わり）により推定する「著量化Ⅱ類」を用いた。

2.1 解析条件
■ 場所地域
○ 六甲山系グリーンベルト整備事業Aゾーン全域
■ 解析に用いたデータ
○ 目的変数として用いたデータ
 既往崩壊地の有無 [崩壊履歴資料のうち、出展・判読方法が明確なH7 以降の崩壊履歴を使用]
○ 説明変数として用いたデータ
 地形：標高、傾斜、斜面方位 [H16 航空レーザー測量より作成した2m メッシュデータより作成]
 地質：表層地質 [地質図 1/50,000 (表層地質図 国土庁)]
 植生：植生群落 [植生状況 GIS データ (H10、1/12,500 空中写真判読)]

2.2 解析単位の検討
解析単位は解析する上で必要となる崩壊地や崩壊等の発生要因のデータ特性を考慮して、土砂生産ポテンシャルが最
も効果的に表現できる単位とする必要がある。また、土砂生産ポテンシャルの評価は、既存崩壊地等と崩壊等の発生要
因との関係より解析することから、当該地域の崩壊地等の発生規模及び各発生要因データの精度より設定した。
■ 崩壊等の発生規模に基づく解析単位の検討
 対象地域では、図 1（対象地域内崩壊地の面積-崩壊地個数 の集計）に示すように解析単位を 35 m² （≒6m*6m メッシュ）
 にすることで、既往崩壊地の95％が表現可能である。
■ 崩壊等の発生要因のデータ精度に基づく解析単位の検討
 崩壊等の発生要因のデータ精度に基づく解析単位は、地形、
 地質、植被のデータ表現として取りまとめた場合、概ね2m～
 50m程度となる。
基礎データの最小単位である地形データが2mメッシュである

2.3 解析におけるポイント
本解析においては、対象地域約 23 k m² を6mメッシュ単位で解析するため、扱うデータ量が多いこと、非崩壊地対

2.3.1 データの取扱に関する配慮

- 328 -
解析するメッシュ数（解析メッシュの総数、非崩壊地：崩壊地の比率）に対する配慮

対象地域と全では解析するメッシュ数が約71.5万メッシュとなり、全区域での解析が困難となることから、サンプルを取り出し解析することとした。サンプルは、ランダムに10回抽出し、それぞれに反対数法による解析を行い、10回の解析結果（カテゴリー数）の平均値を用いることで全域の値を推定することとした。

対象地域では、「既往崩壊地メッシュ数：非崩壊地メッシュ数 = 約10000メッシュ：約715000メッシュ」であり、目的変数となる「崩壊地」、「非崩壊地」の図に偏りがあるため、比率の多い少ない崩壊地特性的正確な把握が困難となる。そこで、崩壊地等が持つ特性と「非崩壊地が持つ特性」を効率的に把握するため、両者より同数のメッシュ（1サンプル：崩壊地5000メッシュ、非崩壊地5000メッシュ）を取り出し解析することで、崩壊地等の特性を把握することとした。

崩壊前の植物を考慮した植物図（崩壊地等）の補正

目的変数と説明変数の関係を考慮すると、解析において崩壊が起こる前の植生が復元された植生図を用いることが望ましい。しかし、崩壊前の植生を厳密に復元することは不可能であることから、既存の植物図において崩壊地等（崩壊地、とくしゃ地、崖崩れ）と判読されている箇所については、崩壊地等以外の最寄の植生で補完した植生図を使用することで、崩壊が起こる前の植生を模擬的に再現することとした。

シナブレで分かりやすい指標とするための発生尤度の整理

対象地域に含まれるカテゴリーの区分が多く、発生尤度（説明変数）と崩壊し易さの因果関係が複雑なものとなる。そこで、発生尤度をシナブレで分かりやすい指標とすることを目的とし、発生尤度と崩壊地との相関性、およびサンプルデータ数等を考慮したカテゴリーの整理を行った。

2.3.2 土砂生産ポテンシャルのランク付け

土砂生産ポテンシャルを相対的に評価するために、算出される結果は個々のメッシュがどの程度のポテンシャルを持っているかを比較できる結果である必要がある。よって、「崩壊地等」、「非崩壊地」の2区分に判別するのではなく、数値化IIの解析過程において算出される解析単位毎のカテゴリー数を用いて、既往崩壊地カテゴリーの分布形より、メッシュ毎に土砂生産ポテンシャルによるランク付けを行った。図2)

3 土砂生産ポテンシャルの評価結果

「2解析手法」により評価した土砂生産ポテンシャルランクについての現地確認を行った結果を図3に示す。

図3より、崩壊地等の写真判読結果が良好に再現されているだけでなく、写真判読で把握できなかった崩壊箇所についてもランク2と評価されており、現地の状況が精度良く表現されていることが確認できた。

4 まとめ

今回の解析では、非常に細密な地形データを用いて、広範囲を対象とした土砂生産ポテンシャルの一様な評価を行ったことが大きな特徴であるが、一方でデータの増加・複雑化等による課題等が生じることとなった。本解決において、これらの課題に対して、データ整理・解析手法、土砂土砂生産ポテンシャルの評価手法について配慮することにより、客観的かつ効率的に土砂生産ポテンシャルを評価する一手法を示すことができた。

今回使用した地形データは2mメッシュの精度を持つが、地質・植生は1/50,000 表層地質図、植生図が1/12,500 航空写真判読による植生群落区分図を用いている。実際の現地では、地質に関しては1/50,000 表層地質図に表現されていない地質の分布や断層等が確認されており、また、植生に関しては1/12,500 航空写真判読による植生群落区分図で表現されていない植生等が複数に生育している。今回の解析した結果を更に精度の良いものにするためには、地形以外のデータの更新・精度向上を図ることにより、更に現地状況に即した解析・評価ができると考えられる。

- 329 -