1. はじめに

南西諸島では、陸域からの流出土砂が河川、海面へ流入・堆積し、生態系に悪影響を及ぼすとともに、漁業、観光などの産業に影響を与える「赤土砂流出」が大きな環境問題となっている。そこで筆者らは、赤土砂の発生機構解明と発生抑制手法の研究を実施してきた。今回、この地域において盛んな製糖業から生じるサトウキビの絞り出す「バガス」を、赤土砂の耐侵食性を向上させる混入材として活用することが可能か検討するため、赤土砂にバガスを混入した試料を用いて、侵食実験を行った。

2. バガス混入試料を用いた侵食実験

まず、赤土砂の入射面であるバイナップル園場からの流出土砂量が最も大きい園場更新後1ヶ月～1年間1）の密度（μd=1.4g/cm³）等しくなるように、現地採取の赤土砂の乾燥重量に対して、0.1、0.2、0.3、0.5、1.0%の割合でバガスを混入させた試料を締固めて作成した。

2.1 回転式侵食試験機による実験

次に、回転式侵食試験機により、混入率0.1、0.2、0.3%の試料を用いて侵食実験を行った。回転式侵食試験機は、円筒内で一定の水位を保つ水に回転流を発生させる、下部に設置した40cm四方の試料表面にせん断流を発生させる構造である2）。実験の結果、混合率0.2%以上の場合、同程度の流速においてバガス無混入の試料と比べると、流出土砂量に大きな違いが見られた（図-1 流速は、既往知見により回転数の0.76倍で近似2）。土砂流出が始まる直前の流速で観ると、無混入試料は約23cm/sであるのに対して、0.2%混入の場合、約46cm/sとなり、無混入試料の2倍程度の流速まで土砂流出が始まりえないことが分かる。しかし、0.2%以上混入しても混入率による大きな違いは見られない。

2.2 実験水路による侵食実験

回転式侵食試験機は水深を6cmに維持しているが、実際の園場表面では水深は1cm以下である。そこで模型水路により、実際に近い水深で実験を行った。実験は、0.3m×1mの試料を台形3%の水路に設置し、水深2、3、4、6、10mmの5ケースで10分間通水させ、流木の水槽で全流出土砂量を受け、水を蒸発させ流出土砂量の重量を計測した。混入率は0、0.2、0.5、1%の4ケースである。

実験の結果、流出土砂量は混入率0.2%、無混入の順に多くなるが、0.5%、1%では大きな違いは見られない（図-1）。また、混入率とマニング則による粗度係数(n)については明確な関係は見られず、特に水深10mm付近では、混入率による粗度係数の違いはほとんど見られない。

図-1 平均流速と流出土砂量
3．養生期間を変えた試料を用いた侵食実験

以上から、耐侵食性向上の理由として、粗度・せん断抵抗の増加以外の要因を考える必要がある。

これまでの実験では、試料作成から約1週間後に行ったため、表面に薄くカビが生えている試料も見られ、顕微鏡で見ると菌糸が高密度で繁茂しているのが認められた。この影響を見るために、試料作成後1～2週間、雰囲気20℃で養生し、菌糸の発達程度の違う試料を作成した後、水路実験により試料作成後1週の試料と流出土砂量の違いを比較した。この結果、養生期間が長い程、流出土砂量が少なくなる傾向が見られた（図-4）。また、菌糸は養生期間が長くなるほど高密度にネットを形成し、中には土粒子が大きい菌糸の束で連結される試料も見られた（写真-1）。以上から、菌糸が細粒土粒子を覆い、赤土砂の耐侵食性を向上させている可能性が認められた。ただし、この菌糸のネットによる強度の増加は、深度3mmでせん断する表層せん断試験では、測定できなかったものと考えられる。

4．おわりに

実験室レベルで、バガス混入による赤土砂の耐侵食性の向上が確認された。今後は、現地に試験地を設置し、降雨、乾燥等、実際にの気象条件下での効果を確認し、対策工への適用を検討していく必要がある。

参考文献
1）耕作ガードの異なるバガス層防砂における赤土砂流出特性、南ら、新砂防Vol.54 No.5, 2002
2）Ground-erosion Resistance Property of Kanto Loam, 欧 国強ら、新砂防 Vol.47 No.3, 1994

--- 235 ---