084 樹木根系が雨水の鉛直浸透に及ぼす影響に関する一考察

高知大学農学部 河出 勇輝 平松 晋也

1. はじめに

地表面に到達した雨水の移動の場である森林土壌中には、樹木根系やその腐朽、地中の小動物の活動や雨水の集中により形成される多くの孔隙（パイプ）、土壌中に点在する骨（砂石）、地震に起因したクラック等が多数存在し、土壌構造の不均一性が極めて大きいことが指摘されている。このため、土壌内の水移動を正確に把握し水循環を崩壊発生の予知・予測問題へと展開していくためには、土壌の不均一性を解明する必要がある。

本研究では、このような森林土壌の取り扱いに起因した水移動過程や崩壊予測問題に関する現状を踏まえ、斜面の不均一性を構成する「パイプ」、「樹木の根系」、「砂石（鉱床）」、「亀裂」等の要素の内、森林土壌中で最も一般かつ多量に見られる「樹木の根系」に着目し、疑似根系を用いた室内鉛直浸透実験を実施することにより、樹木根系が雨水の鉛直浸透過程に及ぼす影響について定量的評価を試みた。

2. 鉛直浸透実験

実験装置は、図1に示すように、内径30cm、高さ30cmの塩化ビニール製の円筒、散水装置、微圧定量ポンプ、貯水タンク、流出量計測用の電子天秤及びデータロガー（パソコン）から構成される。供試体内には、豊浦標準砂と8号砂を質量比1:2の割合で配合した砂を密度の差が生じないように注意しながら自由落下させて充填した（乾燥密度：1.47g/cm³）。微圧定量ポンプを用いて供試体上部に送られた雨水は、供試体内を通過し、下端部に設置した三角塩の頂流量として電子天秤により10秒間隔で自動計測される。実験ケースは、疑似根系の断面積と本数をそれぞれ変化させた場合に対して3パターンの降雨強度（10, 30, 60mm/hr）を与えた15ケースである。供試体内部に埋設する疑似根系としては、長さ30cmで直径1cmと1.8cmの木の棒にニスを塗布したものを使用した。

降雨強度50mm/hrを与えた場合を例として、疑似根系の断面積と本数をそれぞれ変化させた場合の供試体下端部からの地下水流出の経時変化を図1-2及び図3-3より、疑似根系の断面積（円周）や本数の増加とともに地下水流出開始時刻及び地下水流出量が定常状態に達するまでの要する時間が短縮されることがわかる。降雨強度30mm/hr, 10mm/hrにおいても同様の傾向が認められた。

3. 考察

3.1 樹木根系が土壌中の水移動に及ぼす影響

地下水流出開始時間と疑似根系の円周との関係を示す図4より、疑似根系の円周の増加とともに地下水流出開始時間が短縮される傾向が認められる。この傾向は、降雨強度の減少とともにより顕著に現れている。さらに、降雨強度と地下水流出開始時間との間に強い負の相関関係が見られたため、「地下水流出開始時間：Ta (秒)」と「疑似根系の円周：S (cm)」及び「降雨強度：R (mm/hr)」との関係は、(1)式で表されるものとなる。

\[T_a = e^{(0.074 + 0.14S)} \cdot R^{-0.78} \]

(1)

(1)式による計算値と実測値との関係を比較した図5より、(1)式による再現精度は極めて高いことが確認される。
3.2 樹木根系が地下水流出量に及ぼす影響
浸透量の増加量を総根系の円周との関係を図-8に示す。浸透量の増加量ΔQ (cc) は、総根系を埋設した場合と埋設しない場合の供試体下端部からの地下水流出量の差の累加値として(2)式より算出した。

\[
\Delta Q = \frac{Q_R(t) - Q_a(t)}{60 \times 60 \times 10^2} \times A \times 10 \quad (2)
\]

ここに、ΔQ：浸透量の増加量(cc)、Q_R(t)：総根系がある場合のt時の地下水流出量(mm/hr)、Q_a(t)：総根系がない場合のt時の地下水流出量(mm/hr)、t：総根系がある場合と無い場合の供試体下端部からの地下水流出量の差がなくなるまでの時間、A：供試体の断面積(cm^2)である。総根系の埋設の場合の浸透量の増加量は、総根系の円周と総根系に増加し、この増加量は降雨強度の増加とともに顕著になる。さらに、浸透量の増加量と降雨強度との関係には、明瞭な正の相関関係が認められたため、「浸透量の増加量ΔQ (cc)」は、「総根系の円周S (cm)」と「降雨強度R (mm/hr)」を用いて(3)式で表現可能となる(図-7)。

\[
\Delta Q = S^{0.401} \cdot e^{0.012 \cdot R^2 \cdot 0.050} \quad (3)
\]

3.3 根系周辺部での雨水の挙動の再現
降雨強度60mm/hrを与えた場合を例として、総根系を埋設した場合の供試体下端部からの地下水流出量から総根系を埋設しない場合の地下水流出量を差し引くことにより得られる総根系周辺部での雨水の挙動(ハイドログラフ)を図-8に示す。流出開始時間は、地下水流出開始時間Taと同じであり、(1)式により再現可能である。ピーク流量Q_P (cc/sec)と総根系の円周と降雨強度との間に、それぞれ相関関係があることが示され、「ピーク流量Q_P (cc/sec)＝総根系の円周S (cm)」と「降雨強度R (mm/hr)」を用いて、(4)式で表すことができる。4)式による計算値と実測値と関係を示す図-9より、(4)式による高い再現性が確認される。

\[
Q_P = S^{0.773} \cdot R^{0.395} \quad (4)
\]

一方、ピーク流量に達するまでに要する時間T_P (秒)と「流出停止時間T_b (秒)」は、総根系の円周や断面積が影響を受ける。降雨強度に対応した値を示したため、「降雨強度R (mm/hr)」を用いてそれぞれ(5),(6)式で求め近似可能となる。

\[
T_P = 1075.7 \cdot R^{-0.401} \quad (5)
\]

\[
T_b = 568.1 \cdot R^{-0.495} \quad (6)
\]

(5),(6)式による計算値と実測値と関係を示す図-10,11より、それぞれの計算価は実測値と概ね同値を示していることがわかる。

4. おわりに
本研究では、樹木根系の存在が土壌内での雨水の挙動を定量的に把握するとともに、将来においては崩壊予測問題に展開することを目的とし、室内実験浸透実験を実施した。その結果、樹木根系の存在が土壌内の雨水の挙動に多大な影響を及ぼす（浸透速度や浸透量を増加させる）ことが明らかになった。しかし、これらの結果は、総根系に対して実験室内で得られた結果である。このため、今後、同様な結果が現地で得られるかどうかを現地観測を行うことにより確認する必要があるものので、不均一性構成要素を考慮した崩壊発生モデルを構築し、これを利用して土砂災害危険度予測を行う上での一助となることが期待される。